Home
Class 12
MATHS
Find the smallest and the largest value ...

Find the smallest and the largest value of `tan^(-1)((1-x)/(1+x)), 0 le x le 1 `

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_0^1 (tan ^(-1) x)/(1+x^2 )d x

Find the derivative of y=(1+tan x)/(1-tan x)

The value of inte^(tan^(-1)x)((1+x+x^(2)))/((1+x^(2)))dx is

Differentiate w.r.t x the function sin ^(-1)(x sqrt(x)), 0 le x le 1

Solve the following : tan^(-1)((1-x)/(1+x))=1/2 tan^(-1) x (x gt0)

Write the following functions in the simplest form : tan^(-1)((3a^2x - x^3)/(a^3- 3ax^2)), a gt 0, -a/sqrt3 le x le a/sqrt3

prove that tan^(-1) sqrt x = 1/2 cos^(-1)((1-x)/(1+x)), x in [0,1]

If tan^-1x=pi/10 ,then the value of cot^-1x is