Home
Class 12
MATHS
Simplify sincot^(-1)tancos^(-1)x...

Simplify `sincot^(-1)tancos^(-1)x`

Text Solution

Verified by Experts

The correct Answer is:
`sincot^(-1)|cot theta = sin theta = x `
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify tan ^(-1)[(a cos x-b sin x)/(b cos x+a sin x)] if, a/b tan xgt(-1)

Simplify (nP_4)/((n-1)P_3

Simplify : cos^-1{3/5cosx+4/5sinx}

If 0lt xlt1 , then sqrt(1+x^2)[{cos (cot^(-1)x)+sin(cot^(-1)x)}^(2)-1]^(1//2) is equal to a) x/sqrt(1+x^2) b)x c) xsqrt(1+x^2) d) sqrt(1+x^2)

If y = tan^(-1) x + sec^(-1) x + cot^(-1) x + "cosec"^(-1)x , then (dy)/(dx) is equal to

intsin^(-1)((2x)/(1+x^(2)))dx is equal to a) xtan^(-1)x-ln|sec(tan^(-1)x)|+C b) xtan^(-1)x+ln|sec(tan^(-1)x)|+C c) xtan^(-1)x-ln|cos(tan^(-1)x)|+C d)None of these

(i)Simplify f(x)=(sin x-cos x)/(x-pi/4) using the substitution theta =x-pi/4

If x takes negative permissible values , then sin^(-1) x= a) cos^(-1)sqrt(1-x^2) b) -cos^(-1)sqrt(1-x^2) c) cos^(-1)sqrt(x^2-1) d) pi-cos^(-1)sqrt(1-x^2)