Home
Class 12
MATHS
Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1...

Prove that `tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2 tan^(-1)x^n

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that tan^(-1)(2/11) + tan^(-1)(7/24) = tan^(-1)(1/2)

Prove that tan^(-1)((3a^2x-x^3)/(a^3-3ax^2))=3tan^(-1)""(x)/a, agt 0 ,(-a)/sqrt3lexlea/sqrt3

Prove : tan^-1x=sec^-1sqrt(1+x^2) .

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

prove that tan^(-1) sqrt x = 1/2 cos^(-1)((1-x)/(1+x)), x in [0,1]

Solve the following : tan^(-1)((1-x)/(1+x))=1/2 tan^(-1) x (x gt0)

Show that tan^-1(x/(sqrt(a^2-x^2)))=sin^-1(x/a)