Home
Class 12
MATHS
Prove that cos^(-1){sqrt((1+x)/2)}=(cos^...

Prove that `cos^(-1){sqrt((1+x)/2)}=(cos^(-1)x)/2,-1ltxlt1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^-1x=2sin^-1sqrt((1-x)/2)

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

prove that tan^(-1) sqrt x = 1/2 cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2 tan^(-1)x^n

Prove : tan^-1x=sec^-1sqrt(1+x^2) .

prove that 3 cos^(-1) x = cos^(-1) (4x^3 - 3x), x in [1/2,1]

Prove the following : tan^(-1)sqrtx=1/2 cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove that cos 4(x)=1-8 sin ^(2) (x) cos ^(2) (x)

Prove that cos^2theta=(1+cos2theta)/2