Home
Class 12
MATHS
sin^(-1)(a-a^2/3+a^3/9+....)+cos^(-1)(1+...

`sin^(-1)(a-a^2/3+a^3/9+....)+cos^(-1)(1+b+b^2+....)=pi/2` when a)`a = -3` and b = 1 b)`a = 1 and b =1` c)`a = 1/6 and b =1` d)None of these

A

`a = -3` and b = 1

B

`a = 1 and b = 1 =-1/3`

C

`a = 1/6 and b = 1 =1/2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)""x/2+cos^(-1)""y/3=pi/6 , then value of x^2/4-(xy)/(2sqrt3)+y^2/9 a) 3/4 b) 1/2 c) 1/4 d)None of these

If A = (1)/(3) [(1,2,2),(2,1,-2),(a,2,b)] is an orthogonal matrix, then a)a = - 2, b = - 1 b)a = 2, b = 1 c)a = 2, b = - 1 d)a = - 2, b = 1

If intx^(2)*e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+d , then a) a=1,b=1,c=1/2 b) a=1,b=-1,c=-1/2 c) a=1,b=-1,c=-1/2 d)None of these

If (sin^(-1)x)^2 – (cos^(-1) x)^2 = api^2 then the range of 'a' is a) [-3/4,1/4] b) [-3/4,3/4] c) [-1,1] d) [-1,3/4]

If |sin^(-1)x|+|cos^(-1)x|=pi/2 then x in a)R b) [-1,1] c) [0,1] d) phi

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

The value of the expression sin^(-1)(sin""(22pi)/7)+cos^(-1)(cos""(5pi)/3)+tan^(-1)(tan""(5pi)/7)+sin^(-1)(cos2) is a) (17pi)/42 -2 b) -2 c) (-pi)/21 - 2 d)None of these

The value of sin^(-1)(x^2-4x +6) +cos^(-1)(x^2-4x+6) for all x in R is a) pi//2 b) pi c)0 d)None of these

int(dx)/(5+4cosx)=atan^(-1)(b" tan"(x)/(2))+C , then a) a=(2)/(3),b=-1/3 b) a=2/3,b=1/3 c) a=-2/3,b=1/3 d) a=-2/3,b=-1/3

If sin^(-1)(x-1)+cos^(-1)(x-3) +tan^(-1)(x/(2-x^2))= cos^(-1)k+pi then the value of k is A)1 B) -1/sqrt2 C) 1/sqrt2 D)None of these