Home
Class 12
MATHS
Solve 2cos^(-1)x+sin^(-1)x =(11pi)/6...

Solve `2cos^(-1)x+sin^(-1)x =(11pi)/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 2 cos ^(2) x+3 sin x=0

If 2 sin^(-1) x - cos^(-1) x = (pi)/(2) , then x is equal to

If sin ^(-1) x + cos ^(-1) 2x = (pi)/(6), then the value of x is

If sin^(-1)x+sin^(-1)y =(2pi)/3 , then find the value of cos^(-1)x +cos^(-1)y

The value of sin^(-1)[ cos {cos^(-1)(cosx)+sin^(-1)(sinx)}] where "x"in (pi/2,pi) is equal to a) pi/2 b) -pi c) pi d) -pi/2

If sin^(-1)x+sin^(-1)y+sin^(-1)z =(3pi)/2 , then find the value of x^2+y^2+z^2

If "cos"^(-1)x+"cos"^(-1)y=(2pi)/(7) , then the value of "sin"^(-1)x+"sin"^(-1)y is

The exhaustive set of values of a for which a-cot^(-1) 3x = 2 tan^(-1) 3x + cos^(-1)xsqrt3+ sin^(-1) x sqrt3 may have solution a) [-pi/4,pi/4] b) (pi/2,(3pi)/2) c) [(2pi)/3,(4pi)/3] d) [-(3pi)/6,(7pi)/6]