Home
Class 12
MATHS
Prove that sin[2tan^(-1){sqrt((1-x)/(1+x...

Prove that `sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^-1x=2sin^-1sqrt((1-x)/2)

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

Prove that costan^(-1)sin cot^(-1)x=sqrt((x^2+1)/(x^2+2))

intcos{2tan^(-1)sqrt((1-x)/(1+x))}dx is equal to

Integrate the function tan ^(-1) sqrt((1-x)/(1+x))

prove tan ^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2 cos ^(-1) x, -1/2 le x le 1

Prove that cos^(-1){sqrt((1+x)/2)}=(cos^(-1)x)/2,-1ltxlt1

Integrate the following: tan^-1sqrt((1-x)/(1+x))

prove that tan^(-1) sqrt x = 1/2 cos^(-1)((1-x)/(1+x)), x in [0,1]