Home
Class 12
MATHS
Prove that 2 sin^-1(frac(3)(5))=tan^-1(f...

Prove that `2 sin^-1(frac(3)(5))=tan^-1(frac(24)(7))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the above result prove that tan^-1(frac(1)(2))+tan^-1(frac(1)(3))=pi/4

show that sin^-1(frac(3)(5))-sin^-1(frac(8)(17))=cos^-1(frac(84)(85))

Prove that sin^-1frac(4)(5)+sin^-1frac(5)(13)=sin^-1frac(63)(65)

Prove that sin^-1frac12(13)+cos^-1frac4(5)+tan^-1frac63(16)=pi

Evaluate tan(sin^-1frac(3)(5)+cot^-1frac(3)(2))

show that sin^-1frac(3)(5)-sin^-1frac(8)(17)=cos^-1frac(84)(85)

Prove 2tan^-1frac(1)(2)+tan^-1frac(1)(7)=tan^-1frac(31)(17)

Show that tan^-1frac(1)(5)+tan^-1frac(1)(7)+tan^-1frac(1)(3)+tan^-1frac(1)(8)=pi/4

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

If sin(sin^-1(frac(1)(5))+cos^-1(x))=1