Home
Class 12
MATHS
If sin^(-1)x = theta + beta and sin^(-1)...

If `sin^(-1)x = theta + beta and sin^(-1)y = theta - beta `, then `1+xy=` (i) `sin^(2) θ+sin^(2) β ` (ii) `sin^(2) θ+cos^(2) β` (iii) `cos^(2) θ+cos^(2) β` (iv) `cos^(2) θ+sin^(2) β`

A

`sin^(2) theta + sin^(2) beta`

B

`sin^(2) theta + cos^(2) beta`

C

`cos^(2) theta + cos^(2) beta`

D

`cos^(2) theta + sin^(2) beta`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin ^(2) A cos ^(2) B+cos ^(2) A sin ^(2) B+cos ^(2) A cos ^(2) B+sin ^(2) A sin ^(2) B=1

Show that (i) sin ^(2) 6 x-sin ^(2) dot(4) x=sin 2 x sin 10 x (ii) cos ^(2) 2 x-cos ^(2) 6 x=sin 4 x sin 8 x

If x= alpha cos ^(3) theta and y = alpha sin ^(3) theta, then 1 + ((dy)/(dx)) ^(2) is

Find cos^-1(1/2)+2sin^-1(1/2)

Prove that (sin^(2)3A)/(sin^(2)A)-(cos^(2)3A)/(cos^(2)A)=8cos2A

If x = a(1+ cos theta), y = a (theta + sin theta) , then (d^(2)y)/(d x^(2)) at theta = (pi)/(2) is

If x = sin t and y = tan t , then (dy)/(dx) is equal to a) cos ^(2) t b) (1)/( cos ^(3) t ) c) (1)/( cos ^(2) t ) d) sin ^(2) t

Find dy/dx if x=costheta-cos2theta and y=sintheta-sin2theta

Given that tantheta=a/b find sin2theta and cos2theta