Home
Class 12
MATHS
Given x^2=cos2theta Write tan^-1((sqrt(1...

Given `x^2=cos2theta` Write `tan^-1((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))` in simplest form.

A

`pi/4+1/2cos^(-1)x^2`

B

`pi/4+cos^(-1)x^2`

C

`pi/4+1/2 cos^(-1)x`

D

`pi/4 -1/2 cos^(-1)x^2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

prove tan ^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2 cos ^(-1) x, -1/2 le x le 1

Express cot ^(-1)(1/(sqrt(x^2-1))),|x|gt1 in the simplest form.

int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

int(log (x+sqrt(1+x^(2))))/(sqrt(1+x^(2)) )dx is equal to

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .