Home
Class 12
MATHS
If x takes negative permissible values ...

If x takes negative permissible values , then `sin^(-1) x=` a)`cos^(-1)sqrt(1-x^2)` b)`-cos^(-1)sqrt(1-x^2)` c)`cos^(-1)sqrt(x^2-1)`d)`pi-cos^(-1)sqrt(1-x^2)`

A

`cos^(-1)sqrt(1-x^2)`

B

`-cos^(-1)sqrt(1-x^2)`

C

`cos^(-1)sqrt(x^2-1)`

D

`pi-cos^(-1)sqrt(1-x^2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

If x lt 0 , then prove that cos^(-1)x=pi+tan^(-1)""(sqrt(1-x^2))/x

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

Prove that cos^(-1){sqrt((1+x)/2)}=(cos^(-1)x)/2,-1ltxlt1

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)