Home
Class 12
MATHS
The number of real solutions of tan^(-1)...

The number of real solutions of `tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi//2` a)0 b)1 c)2 d)`oo`

A

Zero

B

one

C

two

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions to the equation sin^(-1)x +sin^(-1)(1-x)=cos^(-1)x is a)1 b)0 c)2 d)None of these

The solution of int_(sqrt2)^(x) (dt)/(t sqrt( t^2 -1) )= (pi)/(12) is a)1 b)2 c)3 d)4

The number of solutions to the equation tan^(-1)(x/3)+tan^(-1)(x/2)=tan^(-1)x is a)3 b)2 c)1 d)0

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

The solution of sin^(-1)x - sin^(-1)2x = pm pi/3 is a) pm1/3 b) pi1/4 c) pmsqrt3/2 d) pm1/2

lim_(x rarr oo) sqrt(x^(2)+1)- sqrt(x^(2)-1) = a)-1 b)1 c)0 d)2