Home
Class 12
MATHS
tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=...

`tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=`

A

`pi/2`

B

`pi/3`

C

`pi/4`

D

`pi/4 " or " -(3pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let tan^(-1)y = tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x| le 1/sqrt3 . Then the value of y is

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

If tan^(-1)(1/y)=-pi+cot^(-1)y , where y=x^2-3x+2 then find the value of x.

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

If y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x)) , then (dy)/(dx) is equal to a) (5)/(1+25x^(2)) b) (1)/(1+25x^(2)) c)0 d) (5)/(1-25x^(2))