Home
Class 12
MATHS
sin^(-1)[xsqrt(1-x) - sqrtxsqrt(1-x^2)] ...

`sin^(-1)[xsqrt(1-x) - sqrtxsqrt(1-x^2)]` (i)`sin^(-1)x+sin^(-1)(sqrtx)` (ii)`sin^(-1)x-sin^(-1)(sqrtx)` (iii) `sin^(-1)(sqrtx)-sin^(-1)x` (iv) None of these

A

`sin^(-1)x+sin^(-1)(sqrtx)`

B

`sin^(-1)x-sin^(-1)(sqrtx)`

C

`sin^(-1)(sqrtx)-sin^(-1)x`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y^2=(sin^(-1)x)^2

Write the simplest form of sin^-1[xsqrt(1-x)-sqrtx.sqrt(1-x^2)]

Prove that sin^-1(2xsqrt(1-x^2))=2sin^-1x

sin^(-1)(1-x)-2sin^(-1)x= pi/2 ,then find x

Find dy/dx of the following sin^(-1)[xsqrt(1-x)+sqrtxsqrt(1-x^2)]

Find dy/dx of y=(sinx)^x+sin^(-1)sqrtx

int(sin^(2)x*sec^(2)x+2tanx*sin^(-1)x*sqrt(1-x^(2)))/(sqrt(1-x^(2))(1+tan^(2)x))dx= a) (cos^(2)x)(sin^(-1)x)+C b) (sin^(2)x)(sin^(-1)x)+C c) (sec^(2)x)(cos^(-1)x)+C d) (sec^(2)x)(tan^(-1)x)+C

The value of tan {sin^(-1)(cos(sin^(-1)x))} tan{cos^(-1) (sin(cos^(-1)x))} x in (0,1) a)0 b)1 c)-1 d)None of these

(sin91^(@)+sin1^(@))/(sin91^(@)-sin1^(@))=