Home
Class 12
MATHS
If x, y, z are natural numbers such that...

If x, y, z are natural numbers such that `cot^(-1) x + cot^(-1)y= cot^(-1) z` then the number of ordered triplets (x, y, z) that satisfy the equation is a)0 b)1 c)2 d)infinite solutions

A

0

B

1

C

2

D

infinite solutions

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y , z are in AP and tan ^(-1) x, tan ^(-1) y and tan ^(-1) z are also in AP, then :

Show that cot (x-y)=(cot x cot y+1)/(cot y-cot x)

Find the range of y = (cot^(-1)x)(cot^(-1)(-x)) .

If cot^(-1)x+cot^(-1)y + cot^(-1) z = pi/2 , then x +y+z is also equal to a) 1/x+1/y+1/z b)xyz c) xy+yz+zx d)None of these

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi/2 then the value of x^2+y^2+z^2+2xyz is equal to a)0 b)1 c)2 d)3

If tan^(-1)(1/y)=-pi+cot^(-1)y , where y=x^2-3x+2 then find the value of x.

If cos ^-1 x+cos ^(-1) y+cos ^(-1) z=pi and 0ltx, y ,zlt1 ,show that x^2+y^2+z^2+2 x y z=1

Find the values of x, y, z , if the matrix A=[[0, 2 y, z],[ x, y, -z],[ x, -y, z]] satisfy the equation A^' A=I