Home
Class 12
MATHS
The trigonometric equation sin^(-1) x = ...

The trigonometric equation `sin^(-1) x = 2 sin^(-1) a` has a solution for a)`1/2lt|a|lt1/sqrt2` b)All real values of a c)`|a|le1//sqrt2` d)`|a|ge1/sqrt2`

A

`1/2lt|a|lt1/sqrt2`

B

All real values of a

C

`|a|le1//sqrt2`

D

`|a|ge1/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

sin 765^(@) is equal to a)1 b)0 c) sqrt(3)//2 d) 1//sqrt2

The principal value of sin ^(-1) (- (sqrt2)/(2)) is

The value of sin ^(-1) ((2 sqrt2)/( 3)) + sin ^(-1) (( 1)/(3)) is equal to

The number of solutions to the equation sin^(-1)x +sin^(-1)(1-x)=cos^(-1)x is a)1 b)0 c)2 d)None of these

The value of tan [sin ^(-1) "" (-1)/(sqrt2)] is

Differentiate sin^(-1) ( 2 x sqrt( 1 - x^(2))) with respect to x if (1)/( sqrt(2)) lt x lt 1

x=1/(sqrt2+1) What is the approximate value of 1/x(sqrt2=1.414)

Differentiate sin^(-1) ( 2 x sqrt( 1 - x^(2))) with respect to x if - (1)/( sqrt(2)) lt x lt (1)/( sqrt(2))