Home
Class 12
MATHS
Let tan^(-1)y = tan^(-1)x+tan^(-1)((2x)/...

Let `tan^(-1)y = tan^(-1)x+tan^(-1)((2x)/(1-x^2))`, where `|x| le 1/sqrt3` . Then the value of y is

A

`(3x-x^3)/(1-3x^2)`

B

`(3x+x^3)/(1-3x^2)`

C

`(3x-x^3)/(1+3x^2)`

D

`(3x+x^3)/(1+3x^2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

If tan^(-1)(x+2)+tan^(-1)(x-2) - tan^(-1)((1)/(2)) = 0 , then one of the values of x is equal to

If tan^(-1) ((x-1)/(x-2)) + tan^(-1) ((x+1)/(x+2)) = pi/4 . then find the value of x.

Prove that tan ^(-1) x+tan ^(-1) ((2 x)/(1-x^2))=tan ^(-1)((3 x-x^3)/(1-3 x^2)),|x|lt1/sqrt3

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

If tan^(-1)(1/y)=-pi+cot^(-1)y , where y=x^2-3x+2 then find the value of x.

If tan^-1(frac(x-1)(x-2))+tan^-1(frac(x+1)(x+2))=pi/4 , then find the value of x

prove that tan^(-1) sqrt x = 1/2 cos^(-1)((1-x)/(1+x)), x in [0,1]

Solve tan^-1 2x+tan^-1 3x=pi/4