Home
Class 12
MATHS
If f: [1,oo) rarr [2, oo) is given by ...

If `f: [1,oo) rarr [2, oo) ` is given by `f(x) = x+1/x` , then `f^(-1) (x)` equals a)`((x+sqrt(x^2-4)))/(2)` b)`x/(1+x^2)` c)`((x-sqrt(x^2-4)))/(2)` d)`1+sqrt(x^2-4)`

A

`((x+sqrt(x^2-4)))/(2)`

B

`x/(1+x^2)`

C

`((x-sqrt(x^2-4)))/(2)`

D

`1+sqrt(x^2-4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f : [1, oo) rarr [1, oo) is defined by f(x) = 2^(x(x - 1)) , then f^(-1) (x) is a) ((1)/(2))^(x(x-1)) b) (1)/(2) (1 - sqrt(1 + 4 log_(2)x)) c) (1)/(2) sqrt(1 + 4 log_(2)x) d) (1)/(2) [1 + sqrt(1 + 4 log_(2)x)]

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)

If f: R rarr R is given by f(x) = (x^2 -4)/(x^2+1) , identify the type of function.

If f(x) = |x-2| + |x+1| - x , then f'(-10) is equal to a)-3 b)-2 c)-1 d)0

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))

If y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) , then (dy)/(dx) is equal to a) (x)/( sqrt (1- x ^(2))) b) (1)/( sqrt(1- x ^(2))) c) (2)/( sqrt (1 - x ^(2))) d) (2x)/( sqrt (1- x ^(2)))

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

If f(x) = cos^(-1) ((2 cos x + 3 sin x)/( sqrt(13) ) ) , then [f' (x)]^2 is equal to a) sqrt(1+x) b) 1+2x c) 2 d) 1