Home
Class 12
MATHS
If f(x) = log [(1+x)/(1-x)] , the prove ...

If `f(x) = log [(1+x)/(1-x)]` , the prove that `f[(2x)/(1+x^2)] =2f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2 x)=(3f(x)+1)/(f(x)+3) .

If f(x)=log((1+x)/(1-x)),-1ltxlt1 then f((3x+x^(3))/(1+3x^(2)))-f((2x)/(1+x^(2))) is

If f(x) = (sin^(-1)x)/(sqrt(1-x^(2))) , then the value of (1-x^(2))f'(x) - x f(x) is

If f (x) = (x +2)/( 3x -1) , then f {f (x) } is

If f(x) = ((x)/(2))^(10) , then f(1) + (f'(1))/(1!) + (f''(1))/(2!) + …….(f^((10))(1))/(10!) is equal to

If f (x)= cos (log _(e) x) then f (x) f (y) - 1/2 [f ((y)/(x)) + f (xy)] has the value :