Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x)=sqrt(sin^(-1)(2x)+pi/6)` for real - valued x is a)`[-1/4, 1/2]` b)`[-1/2,1/2]`c)`(-1/2, 1/9)`d)`[-1/4,1/4]`

A

`[-1/4, 1/2]`

B

`[-1/2,1/2]`

C

`(-1/2, 1/9)`

D

`[-1/4,1/4]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

Find the domain and the range of the functions f(x) = 1/(2x-1)

The domain of the real valued function f(x)=sqrt(1-2x)+2sin^(-1)((3x-1)/(2)) is a) [-(1)/(3),1] b) [(1)/(2),1] c) [-(1)/(2),(1)/(3)] d) [-(1)/(3),(1)/(2)]

Find the domain of the function f(x) = cos^(-1)((6-3x)/4) +"cosec"^(-1)((x-1)/2)

Integrate the function sqrt(1-4 x-x^2) d x

If (sin^(-1)x)^2 – (cos^(-1) x)^2 = api^2 then the range of 'a' is a) [-3/4,1/4] b) [-3/4,3/4] c) [-1,1] d) [-1,3/4]

The range of the function f(x)=(x^(2)+8)/(x^(2)+4),x inR is a) [-1,(3)/(2)] b) (1,2] c) (1,2] d) [1,2]