Home
Class 12
MATHS
If sum(k=0)^(n) f (x+ka)=0 where a gt 0 ...

If `sum_(k=0)^(n) f (x+ka)=0` where `a gt 0` then the period of f(x) is a)a b)(n+1) a c)`a/(n+1)` d)f(x) is non - periodic

A

a

B

(n+1) a

C

`a/(n+1)`

D

f(x) is non - periodic

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the period of f(x) = sin""(pix)/(n!)-cos""(pix)/((n+1)!)

If f(x)= (x+1)/(x-1) then the value of f(f(x)) is equal to a)x b)0 c)-x d)1

If |(x^(n),x^(n+2),x^(2n)),(1,x^(a),a),(x^(n+5),x^(a+6),x^(2n+5))|=0AAx inR , where n in N then value of 'a' is a)n b)n-1 c)n+1 d)None of these

If int(log_(e)(1+sin^(2)x))/(cos^(2)x)dx=f(x)+C , then the value of f(0) is a)0 b)1 c)2 d)3

If f(x)={{:(2-x,xlt0),(x^2-4x+2,xge0)} then the value f(f(f(1))) is a) gt0 b) lt 0 c) =0 d)does not exist

Let f (x+y) =f (x) f(y) and f(x)=1 +sin (3x) g(x) , where g(x) is continuous , then f '(x) is : a)f(x) g(0) b)3g(0) c)f(x) cos (x) d)3f(x)g(0)

Let f_(n) (x) be the nth derivative of f(x), The least value of n so that f_(n)=f_(n+1) where f(x)=x^(2)+e^(x) is a)4 b)5 c)2 d)3

Let f(x+1/y)+f(x-1/y)=2 f(x)f(1/y)AAxy in R, y ne 0 and f(0) = 0 then the value of f(1) + f(2) = a) -1 b)0 c)1 d)none of these

f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2)) then a)f(x) has exactly one point of minima b)f(x) has exactly one point of maxima c)f(x) is increasing in (0, (pi)/(2)) . d)f(x) is decreasing in (0, (pi)/(2)) .