Home
Class 12
MATHS
What is the fundamental period of f(x) =...

What is the fundamental period of `f(x) = (sin x + sin 3x)/(cos x + cos 3x)` a)`pi//2` b)`pi` c)`2pi` d)`3pi`

A

`pi//2`

B

`pi`

C

`2pi`

D

`3pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Period of f(x) = cos (Isin xl - Icosxl) is a) pi b) 2pi c) pi/2 d)None of these

The period of the function f(x) = |sin 2x| + |cos 8x| is a) 2pi b) pi c) (2pi)/(3) d) (pi)/(2)

The period of the function f(x)=abs(sinx)+abs(cosx) is a) 2pi b) 3pi c) (3pi)/2 d) pi/2

Discuss the extremum of f(x) = sin x (1 + cos x), x in (0, pi//2) .

The period of function f(x)="cos"4x+"tan"3x is a) pi//12 b) pi//6 c) pi//2 d) pi

The period of the function |sin^3""x/2|+|cos^5""x/5| is a) 2pi b) 10pi c) 8pi d) 5pi

The period of the function f(x) = tan (4x - 1) is a) pi b) (pi)/(2) c) 2pi d) (pi)/(4)

The solution of the equation [sin x+ cos x]^(1+ sin 2x)=2,-pile x le pi is a) pi/2 b) pi c) pi/4 d) (3 pi)/4

The length of the longest interval in which the function 3 sin x - 4 sin^(3) x is increasing is a) (pi)/(3) b) (pi)/(2) c) (3 pi)/(2) d) pi