Home
Class 12
MATHS
If f(x) = 2x +|x| , g(x) =1/3 (2x -|x|) ...

If `f(x) = 2x +|x| , g(x) =1/3 (2x -|x|) and h(x) =f (g(x))`, then domian of `sin^(-1)underset("n times")(underbrace((h(h(h(h...h(x)...))))))` is

A

a) `[-1,1]`

B

b) `[-1,-1/2]cup[1/2,1]`

C

c) `[-1,-1/2]`

D

d) `[1/2,1]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = x^(2)-1 and g(x) = (x+1)^(2) , then (gof) (x) is

If f(x) = sin x + cos x, g(x) = x^2 -1 , then g(f(x)) is invertible in the domain

If f(x)=8x^3 and g(x)=x^(1/3) , find g(f(x)) and f(g(x))

If f(x)=x^2-3x and g(x)=x+2 find (f+g)(x) , (f-g)(x) and (fg)(x)

If f(x)=x^3+5x and g(x)=2x+1 ,find (f+g)(2) and (fg)(1) .

If f(x) = 3x + 5 and g(x) = x^(2) - 1 , then (fog) (x^(2) - 1) is equal to

Let f (x) = |x-2| and g (x) = f (f (x)). Then derivative of g at the point x =5 is

Find f o g and g o f f(x) = |x| and g(x) = |5x -2|

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to