Home
Class 12
MATHS
If f(x) = sin x + cos x, g(x) = x^2 -1 ...

If `f(x) = sin x + cos x, g(x) = x^2 -1 ` , then g(f(x)) is invertible in the domain

A

`[0,pi/2]`

B

`[-pi/4, pi/4]`

C

`[-pi/2, pi/2]`

D

`[0,pi]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 3x + 5 and g(x) = x^(2) - 1 , then (fog) (x^(2) - 1) is equal to

If f(x) = x^(2)-1 and g(x) = (x+1)^(2) , then (gof) (x) is

Find the values of p if f(x) = cos x - 2 px is invertible.

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to

If f(x) = sin x + cos x, x in (-oo, oo) and g(x) = x^(2), x in (-oo, oo) , then (fog)(x) is equal to a)1 b)0 c) sin^(2) (x) + cos (x^(2)) d) sin (x^(2)) + cos (x^(2))

If f(x)=8x^3 and g(x)=x^(1/3) , find g(f(x)) and f(g(x))

If g(x) is the inverse of f(x) and f'(x) = (1)/( 1+ x^3) , then g'(x) is equal to a) g(x) b) 1+g(x) c) 1+ {g(x)}^3 d) (1)/( 1+ {g(x)}^3)

Sajan finds the derivate of two functions f(x) = x^2 + cos x and g(x) = x^2 cos x as follows f(x) = x^2 + cos x , f'(x) = 2x - sin x, g (x) = x^2 cos x , g'(x) = 2x ( - sin x) Sajan makes a mistake in finding derivative of one of the functions. Identify that function and find out correct derivate of that function

Let f : R to R :f (x) = x ^(2) g : R to R : g (x) = x + 5, then gof is:

If f(x) = 2x +|x| , g(x) =1/3 (2x -|x|) and h(x) =f (g(x)) , then domian of sin^(-1)underset("n times")(underbrace((h(h(h(h...h(x)...)))))) is