Home
Class 12
MATHS
Consider a real-valued function f(x) sat...

Consider a real-valued function f(x) satisfying 2f(xy) `=(f(x))^(y)+ (f(y))^(x) AA x, y in R and f(1) = a` where `a ne 1` then `(a-1)sum_(i=1)^(n)f(i)=` a)`a^(n)-1` b)`a^(n+1)+1` c)`a^(n)+1` d)`a^(n+1) -a`

A

`a^(n)-1`

B

`a^(n+1)+1`

C

`a^(n)+1`

D

`a^(n+1) -a`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f: RrarrR satisfies the equation f(x) f(y) - f(xy) = x+ y, AAx,y in R and f(1) gt 0 , then

The number of linear functions f satisfying f(x+f(x))= x + f (x) AA x in R is a)0 b)1 c)2 d)3

If f is real valued function such that f(x+y) = f(x) + f(y) and f(1) = 5 , then find the value of f(100)

Prove that f(x) given by f(x+y)=f(x) +f(y) AA x in R is an odd function.

If f is a function satisfying f(x+y)=f(x) . f(y) 'for all x, y in N such that f(1)=3 . And overset(n)sum_(x=1) f(x)=120 , find the value of n .