Home
Class 12
MATHS
The minimum value of e^((2x^(2) - 2x + 1...

The minimum value of `e^((2x^(2) - 2x + 1) sin^(2) x)` is a)e b)`1//e` c)1 d)0

A

e

B

1/e

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of f(x) = max{x, 1 + x, 2 - x} is a) (1)/(2) b) (3)/(2) c)1 d)0

Choose the correct answer. For all real values of x , the minimum value of (1-x+x^2)/(1+x+x^2) is a)0 b)1 c)3 d)1/3

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

If f(x)=int_(1)^(x)(tan^(-1)(t))/(t)dt,AA x in R^(+) then the value of f(e^(2))-f((1)/(e^(2))) is a)0 b) pi/2 c) pi d) 2pi

Let a and b be two positive real numbers. Then the value of int_(a)^(b)(e^(x//a)-e^(b//x))/(x)dx is a)0 b)ab c)1/ab d)e^ab

The value of abs((x,x-1) , (x+1,x):} is a)1 b)x c) x^2 d)0

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

Evaluate int_0^1 x^2 e^x d x

underset( x to 0)(lim) (e^(x^2) - cos x)/( x^2) is equal to a) 3/2 b) 1/2 c)1 d) - (3)/(2)