Home
Class 12
MATHS
If f(x) = (t + 3x - x^(2))/(x - 4), wher...

If `f(x) = (t + 3x - x^(2))/(x - 4)`, where t is a parameter for which f(x) has a minimum and maximum, then the range of values of t is a)(0, 4) b)`(0, oo)` c)`(-oo, 4)` d)`(4, oo)`

A

(0, 4)

B

`(0, oo)`

C

`(-oo, 4)`

D

`(4, oo)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If |x-1|+|x-3| le 8 , then the values of x lie in the interval a) (-oo, -2) b) [-2, 6] c) (-3, 7) d) (-2, oo)

Let f(x) = cos x - (1 - (x^(2))/(2)) then f(x) is increasing in the interval a) (-oo, 1] b) [0, oo) c) (-oo, -1] d) (-oo, oo)

If f (x) = cos x - cos ^(2) x + cos ^(3) x -... to oo, then int f (x) dx equals to :

If int_(0)^(x)f(x)sintdt= constant, 0ltxlt2pi and f(pi)=2 , then the value of f(pi//2) is a)3 b)2 c)4 d)8

The interval in which y=x^2e^(-x) is increasing is a) (0,2) b) (-2,0) c) (2,oo) d) (-oo,oo)

If int_(0)^(x^(2))f(t)dt=xcospix , then the value of f(4) is :a)1 b) 1/4 c)-1 d) (-1)/4

Let f(x) = int e^(x) (x - 1) (x - 2)dx . Then f decreases in the interval a) (-oo, - 2) b) (-2, -1) c)(1, 2) d) (2, + oo)