Home
Class 12
MATHS
Function f(x) = |x| - |x - 1| is monoton...

Function `f(x) = |x| - |x - 1|` is monotonically increasing when a)`x lt 0` b)`x gt 1` c)`x lt 1` d)`0 lt x lt 1`

A

`x lt 0`

B

`x gt 1`

C

`x lt 1`

D

`0 lt x lt 1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = sin^(4)x + cos^(4) x increases if a) 0 lt x lt pi//8 b) pi//4 lt x lt 3 pi//8 c) 3 pi//8 lt x lt 5pi//8 d) 5 pi//8 lt x lt 3 pi//4

The domain of the function f(x) = (1)/(sqrt(9-x^(2))) is a) -3 le x le 3 b) -3 lt x lt 3 c) -9 le x le 9 d) -9 lt x lt 9

If |z + 1| lt |z - 1| , then z lies a)on the X-axis b)on the Y-axis c)in the region x lt 0 d)in the region y gt 0

Find the least value of k for which the function x^(2) + kx + 1 is an increasing function in the interval 1 lt x lt 2 .

Find the complete set of values of lambda , for which the function f(x) = {{:(x + 1, x lt 1),(lambda,x = 1),(x^(2) - x + 3,x gt 1):} is strictly increasing at x = 1.