Home
Class 12
MATHS
f(x) = (x)/(sqrt(1 + x))-log(e) (1 + x),...

`f(x) = (x)/(sqrt(1 + x))-log_(e) (1 + x), x gt - 1` is

A

a) monotonically increasing

B

b) monotonically decreasing

C

c) non monotonic

D

d) discontinuous

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f : [1, oo) rarr [1, oo) is defined by f(x) = 2^(x(x - 1)) , then f^(-1) (x) is a) ((1)/(2))^(x(x-1)) b) (1)/(2) (1 - sqrt(1 + 4 log_(2)x)) c) (1)/(2) sqrt(1 + 4 log_(2)x) d) (1)/(2) [1 + sqrt(1 + 4 log_(2)x)]

If f(x)=x/(sqrt((1+x^2))) then (fofof) (x) =

If f(x)=log_(x^(3))(log_(e)x^(2)) , then f'(x) at x=e is a) (1)/(3e)(1-log_(e)2) b) (1)/(3e)(1+log_(e)2) c) (1)/(3e)(-1+log_(e)2) d) -(1)/(3e)(1+log_(e)2)

If f(x) = (sin^(-1)x)/(sqrt(1-x^(2))) , then the value of (1-x^(2))f'(x) - x f(x) is

Evaluate lim_(x rarr 1) where f(x) = {(x^2 - 1, x le 1),( -x^2 - 1 , x gt 1) :}

lim _( x to 0) [ (2 ^(x) -1)/( sqrt (1 + ) x-1 )] is equal to: a) log _(e) 2 b) log _(e) sqrt2 c) log _(e) 4 d) 1/2