Home
Class 12
MATHS
If intf(x)dx=g(x), then intf^(-1)(x)dx ...

If `intf(x)dx=g(x)`, then `intf^(-1)(x)dx` is equal to a)`g^(-1)(x)` b)`xf^(-1)(x)-g(f^(-1)(x))` c)`xf^(-1)(x)-g^(-1)(x)` d)`f^(-1)(x)`

A

`g^(-1)(x)`

B

`xf^(-1)(x)-g(f^(-1)(x))`

C

`xf^(-1)(x)-g^(-1)(x)`

D

`f^(-1)(x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If intg(x)dx=g(x) , then intg(x){f(x)+f'(x)}dx is equal to

int_(-1)^(1)x(1-x)(1+x)dx is equal to

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to

If f(a+b-x) = f(x), then int_a^b xf(x) dx =

If intf(x)dx=logabs(tanx)+C . Find f(x)

If intf(x)dx=Psi(x) , then intx^(5)f(x^(3))dx is equal to a) 1/3[x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx]+c b) 1/3x^(3)Psi(x^(3))-3intx^(2)Psi(x^(3))dx+c c) 1/3x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx+c d) 1/3[x^(3)Psi(x^(3))-intx^(3)Psi(x^(3))dx]+c

If f(x)= (x+1)/(x-1) then the value of f(f(x)) is equal to a)x b)0 c)-x d)1

Let f(x)=-2x^(2)+1 and g(x)=4x-3 then (gof)(-1) is equal to