Home
Class 12
MATHS
intsqrt(e^(x)-1)dx= a)2[sqrt(e^(x)-1)-ta...

`intsqrt(e^(x)-1)dx=` a)`2[sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)]+c` b)`sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)+c` c)`sqrt(e^(x)-1)+tan^(-1)sqrt(e^(x)-1)+c` d)`2[sqrt(e^(x)-1)+tan^(-1)sqrt(e^(x)-1)]+c`

A

`2[sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)]+c`

B

`sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)+c`

C

`sqrt(e^(x)-1)+tan^(-1)sqrt(e^(x)-1)+c`

D

`2[sqrt(e^(x)-1)+tan^(-1)sqrt(e^(x)-1)]+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int sqrt(e^(x)-1) dx is equal to :

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

int (dx)/((x + 1) sqrt(x)) is equal to a) tan^(-1) sqrt(x) + C b) 2 tan^(-1) x + C c) 2 tan^(-1) (sqrt(x)) + C d) tan^(-1) (x^((3)/(2))) + C

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx is equal to a) (1)/(sqrt(3))tan^(-1)((x)/(sqrt(3)(x+1))) b) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(3(x+1)))) c) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(x+1))) d)None of these

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))dx=

Evaluate int(e^(x))/(sqrt(4-e^(2x)))dx

int_(-1)^(1//2)(e^(x)(2-x^(2))dx)/((1-x)sqrt(1-x^(2))) is equal to a) (sqrt(e))/(2)(sqrt(3)+1) b) (sqrt(3e))/(2) c) sqrt(3e) d) sqrt(e/3)