Home
Class 12
MATHS
intxsinxsec^(3)xdx a)1/2[sec^(2)x-tanx]+...

`intxsinxsec^(3)xdx` a)`1/2[sec^(2)x-tanx]+c` b)`1/2[xsec^(2)x-tanx]+c` c)`1/2[xsec^(2)x+tanx]+c` d)`1/2[sec^(2)x+tanx]+c`

A

`1/2[sec^(2)x-tanx]+c`

B

`1/2[xsec^(2)x-tanx]+c`

C

`1/2[xsec^(2)x+tanx]+c`

D

`1/2[sec^(2)x+tanx]+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int1/cos^2xdx =________ a) sec^2x+C b) tan^2x+C c)secx+C d)tanx+C

inte^(-x)(1-tanx)secxdx is equal to a) e^(-x)secx+c b) e^(-x)tanx+c c) -e^(-x)tanx+c d) -e^(-x)secx+c

inte^(tanx)(sinx-secx)dx , is equal to a) e^(tanx)*cosx+C b) e^(tanx)*sinx+C c) -e^(tanx)*cosx+C d) e^(tanx)*secx+C

int(sin^(4)x)/(cos^(2)x)dx is equal to a) -(3x)/(2)+1/4sin2x-2tanx+C b) -(3x)/(2)+1/4sin2x+tanx+C c) -(3x)/(2)-1/4sin2x+2tanx+C d) -(3x)/(2)-1/4sin2x-2tanx+C

int(secxcosecx)/(2cotx-secxcosecx)dx is equal to a) log|secx+tanx|+c b) log|secx+cosecx|+c c) (1)/(2)log|sec2x+tan2x|+c d) log|sec2x+cosec2x|+c

int(1-tan^(2)x)dx is equal to a) tanx+C b) secx+C c) 2x-secx+C d) 2x-tanx+C

int(sin^(2)x*sec^(2)x+2tanx*sin^(-1)x*sqrt(1-x^(2)))/(sqrt(1-x^(2))(1+tan^(2)x))dx= a) (cos^(2)x)(sin^(-1)x)+C b) (sin^(2)x)(sin^(-1)x)+C c) (sec^(2)x)(cos^(-1)x)+C d) (sec^(2)x)(tan^(-1)x)+C

inte^(x){logsinx+cotx}dx is equal to : a) e^(x)cotx+c b) e^(x)logsinx+c c) e^(x)logsinx+tanx+c d) e^(x)+sinx+c

The minimum value of the function f(x)=(sinx)/(sqrt(1-cos^(2))x)+(cosx)/(sqrt(1-sin^(2)x))+(tanx)/(sqrt(sec^(2)x-1))+(cotx)/(sqrt(cosec^(2)x-1)) whenever it is defined is

int( sin ^2 x-cos ^2 x)/(sin ^2 x cos ^2 x) d x is equal to a) tan x+cot x+C b) tan x+cosec x+C c) -tan x+cot x+C d) tan x+sec x+C