Home
Class 12
MATHS
If I(n)=int(lnx)^(n)dx then I(n)+nI(n-1)...

If `I_(n)=int(lnx)^(n)dx` then `I_(n)+nI_(n-1)`

A

`((lnx)^(n))/(x)`

B

`x(lnx)^(n-1)`

C

`x(lnx)^(n)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//4)tan^(n)xdx , then (1)/(I_(3)+I_(5)) is

I_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(n to infty) n[I_(n)+I_(n-2)] equals :

Let I_(n)=inttan^(n)xdx,(ngt1).I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration, then the ordered pair (a,b) is equal to

If int_(0)^(a)x^(m)(a-x)^(n)dx=k then int_(0)^(a)x^(n)(a-x)^(m)dx=