Home
Class 12
MATHS
inte^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x)...

`inte^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x)` is equal to

A

a) `-e^(tan^(-1)x)+C`

B

b)`e^(tan^(-1)x)+C`

C

c) `-x*e^(tan^(-1)x)+C`

D

d) `x*e^(tan^(-1)x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

intx^(3)d(tan^(-1)x) is equal to

int_1^x tan ^(-1) x d x

int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx is equal to : a) 1/4cos[tan^(-1)(x^(4))]+c b) 1/4sin[tan^(-1)(x^(4))]+c c) -1/4cos[tan^(-1)(x^(4))]+c d) 1/4sec^(-1)[tan^(-1)(x^(4))]+c

The value of inte^(tan^(-1)x)((1+x+x^(2)))/((1+x^(2)))dx is

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

int(x^(2)-1)/((x^(2)+1)sqrt(1+x^(4)))dx is equal to

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

If 0lt xlt1 , then sqrt(1+x^2)[{cos (cot^(-1)x)+sin(cot^(-1)x)}^(2)-1]^(1//2) is equal to a) x/sqrt(1+x^2) b)x c) xsqrt(1+x^2) d) sqrt(1+x^2)

Find int e^x(tan^-1x + 1/(1+x^2))dx