Home
Class 12
MATHS
intx^(x)ln(ex)dx is equal to...

`intx^(x)ln(ex)dx` is equal to

A

`x^(x)+C`

B

`x*lnx+C`

C

`(lnx)^(x)+C`

D

`x^(lnx)+C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If intf(x)dx=Psi(x) , then intx^(5)f(x^(3))dx is equal to a) 1/3[x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx]+c b) 1/3x^(3)Psi(x^(3))-3intx^(2)Psi(x^(3))dx+c c) 1/3x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx+c d) 1/3[x^(3)Psi(x^(3))-intx^(3)Psi(x^(3))dx]+c

int 1/x(log_(ex)e)dx is equal to

intx^(3)d(tan^(-1)x) is equal to

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

int (sin x + cos x)/( e^(-x) + sin x) dx is equal to a) log | 1-e^(x) sin x| +C b) log | 1 + e^(-x) sin x| + C c) log | 1+e^(x) sin x| + C d) log | 1 -e^(-x) sinx | +C

int((x-a)/(x) - (x)/(x+a))dx is equal to

int1/(x"log"x^(2))dx is equal to a) 1/(2)"log"|"log"x^(2)|+C b) "log"|"log"x^(2)|+C c) 2"log"|"log"x^(2)|+C d) 4"log"|"log"x^(2)|+C

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

int_(-1)^(1)(x^(3)+|x|+1)/(x^(2)+2|x|+1)dx , is equal to a) ln2 b) 2 ln 2 c) 1/2 ln 2 d)None of these

intsin^(-1)((2x)/(1+x^(2)))dx is equal to a) xtan^(-1)x-ln|sec(tan^(-1)x)|+C b) xtan^(-1)x+ln|sec(tan^(-1)x)|+C c) xtan^(-1)x-ln|cos(tan^(-1)x)|+C d)None of these