Home
Class 12
MATHS
inte^(3logx)(x^(4)+1)^(-1)dx=...

`inte^(3logx)(x^(4)+1)^(-1)dx=`

A

`log(x^(4)+1)+c`

B

`1/4log(x^(4)+1)+c`

C

`-log(x^(4)+1)+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int3x^(2)(x^(3)+1)^(10)dx=

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate the following int(x)/(x^(4)+x^(2)+1)dx

int((x^(3)-1))/((x^(4)+1)(x+1))dx= a) 1/4ln(1+x^(4))+1/3ln(1+x^(3))+c b) 1/4ln(1+x^(4))-1/3ln(1+x^(3))+c c) 1/4ln(1+x^(4))-ln(1+x)+c d) 1/4ln(1+x^(4))+ln(1+x)+c

int(1+logx)/((1+xlogx)^(2))dx is equal to a) (1)/(1+xlog|x|)+C b) (1)/(1+log|x|)+C c) (-1)/(1+xlog|x|)+C d) log|(1)/(1+log|x|)|+C

The value of int(x^(2)+1)/(x^(4)-x^(2)+1)dx is

int{(logx-1)/(1+(logx)^(2))}^(2)dx is equal to a) (logx)/((logx)^(2)+1)+c b) (x)/(x^(2)+1)+c c) (xe^(x))/(1+x^(2))+c d) (x)/((logx)^(2)+1)+c

int((x^(4)-x)^(1//4))/(x^(5))dx is equal to

int(x^(2))/(1+(x^(3))^(2) dx is equal to