Home
Class 12
MATHS
int(x^(3))/(x+1)dx is equal to...

`int(x^(3))/(x+1)dx` is equal to

A

`x+(x^(2))/(2)+(x^(3))/(3)-ln|1+x|+C`

B

`x+(x^(2))/(2)-(x^(3))/(3)-ln|1+x|+C`

C

`x-(x^(2))/(2)-(x^(3))/(3)-ln|1+x|+C`

D

`x-(x^(2))/(2)+(x^(3))/(3)-ln|1+x|+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

int (sqrt (x^(2) -1 ))/(x ) dx is equal to

int(cos2x)/(cosx)dx is equal to

int(x^(3)-1)/(x^(3)+x)dx is equal to a) x-log_(e)|x|+log_(e)(x^(2)+1)-tan^(-1)x+C b) x-log_(e)|x|+1/2log_(e)(x^(2)+1)-tan^(-1)x+C c) x+log_(e)|x|+1/2log_(e)(x^(2)+1)+tan^(-1)x+C d)None of these

int(x^(3)-x)/(1+x^(6))dx is equal to a) 1/6"log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C b) 1/6"tan"^(-1)((x^(2)+1)^(2))/(2)+C c) "log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C d) "tan"^(-1)(x^(2)+1)^(2)/(2)+C

int (1)/(7) sin((x)/(7) + 10) dx is equal to

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to