Home
Class 12
MATHS
intx^(3)d(tan^(-1)x) is equal to...

`intx^(3)d(tan^(-1)x)` is equal to

A

a) `(x^(2))/(2)+1/2ln(1+x^(2))+C`

B

b) `-(x^(2))/(2)+1/2ln(1+x^(2))+C`

C

c) `-(x^(2))/(2)-1/2ln(1+x^(2))+C`

D

d) `(x^(2))/(2)-1/2ln(1+x^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

sin(tan^-1(1)) is equal to

inte^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x) is equal to

sin(tan^(-1)x),|x| lt1 is equal to

If intf(x)dx=Psi(x) , then intx^(5)f(x^(3))dx is equal to a) 1/3[x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx]+c b) 1/3x^(3)Psi(x^(3))-3intx^(2)Psi(x^(3))dx+c c) 1/3x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx+c d) 1/3[x^(3)Psi(x^(3))-intx^(3)Psi(x^(3))dx]+c

int(x^(3)-1)/(x^(3)+x)dx is equal to a) x-log_(e)|x|+log_(e)(x^(2)+1)-tan^(-1)x+C b) x-log_(e)|x|+1/2log_(e)(x^(2)+1)-tan^(-1)x+C c) x+log_(e)|x|+1/2log_(e)(x^(2)+1)+tan^(-1)x+C d)None of these

2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is equal to

The value of tan^(-1) (2) + tan^(-1) (3) is equal to a) (3pi)/(4) b) (pi)/(4) c) (pi)/(3) d) tan^(-1) (6)

int_(0) ^(pi//2) (dx)/( 1 + tan^(3) x) is equal to a)1 b) pi c) pi/2 d) pi/4