Home
Class 12
MATHS
int(cos2x)/(cosx)dx is equal to...

`int(cos2x)/(cosx)dx` is equal to

A

`2sinx+log(secx-tanx)+C`

B

`2sinx-log(secx-tanx)+C`

C

`2sinx+log(secx+tanx)+C`

D

`2sinx-log(secx+tanx)+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos5x+cos4x)/(1-2cos3x)dx is equal to a) -((sin2x)/(2)+cosx)+C b) -((cos2x)/(2)+sinx)+C c) -((cos2x)/(2)+cosx)+C d) -((sin2x)/(2)+sinx)+C

int_(0)^(pi//2) log((cos x)/(sin x)) dx is equal to

int (1)/(sin x cos x)dx is equal to

int(sin^(6)x+cos^(6)x+3sin^(2)xcos^(2)x)dx is equal to

int(x^(3))/(x+1)dx is equal to

int(cos2x-cos2theta)/(cosx-costheta)dx is equal to

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

int(ln(tanx))/(sinx*cosx)dx , is equal to