Home
Class 12
MATHS
int({f(x)*phi'(x)-f'(x)*phi(x)})/(f(x)*p...

`int({f(x)*phi'(x)-f'(x)*phi(x)})/(f(x)*phi(x)){logphi(x)-logf(x)}dx` is equal to

A

a) `"log"(phi(x))/(f(x))+k`

B

b) `1/2{"log"(phi(x))/(f(x))}^(2)+k`

C

c) `(phi(x))/(f(x))"log"(phi(x))/(f(x)) +k`

D

d) None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If intg(x)dx=g(x) , then intg(x){f(x)+f'(x)}dx is equal to

f(x)intg(x)dx-int(f'(x)intg(x)dx)dx

If intxf(x)dx=(f(x))/2 , then f(x) is equal to :

Let f(x)=(sin^(2)pix)/(1+pi^(x)) Then, int(f(x)+f(-x))dx is equal to :a)0 b) x+c c) x/2-(cospix)/(2pi)+c d) x/2-(sin2pix)/(4pi)+c

If f(x) = x^(6) + 6^(x) , then f'(x) is equal to

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to