Home
Class 12
MATHS
int(1)/((e^(x)+e^(-x))^(2))dx=...

`int(1)/((e^(x)+e^(-x))^(2))dx=`

A

a) `-(1)/(2(e^(2x)+1))+c`

B

b) `(1)/(2(e^(2x)+1))+c`

C

c) `-(1)/(e^(2x)+1)+c`

D

d) None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(1//2)(e^(x)(2-x^(2))dx)/((1-x)sqrt(1-x^(2))) is equal to a) (sqrt(e))/(2)(sqrt(3)+1) b) (sqrt(3e))/(2) c) sqrt(3e) d) sqrt(e/3)

If int_(1)^(2)e^(x^(2))dx=a , then int_(e)^(e^(4))sqrt(lnx)dx is equal to

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

If int_(0)^(x)e^(xt).e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)f(t)dt then f(t) is a) e^(-t^(2)//4) b) e^(-t//4) c) 2e^(t^(2)//4) d) e^(t^(2)//2)

Evaluate int(e^(x))/(e^(2x)+6e^(x)+5)dx .

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

int (dx)/(e^(x)+e^(-x)+2) is equal to

int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx is equal to

Find int ((e ^(x) - e ^(-x)) dx)/( (e ^(x) + e ^(-x))