Home
Class 12
MATHS
int(e^(-x))/(1+e^(x))dx=...

`int(e^(-x))/(1+e^(x))dx=`

A

`log(1+e^(x))-e^(-x)+c`

B

`log(1+e^(x))+e^(-x)+c`

C

`log(1+e^(-x))-e^(-x)+c`

D

`log(1+e^(-x))+e^(-x)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int(e^(2x)-1)/(e^(2x)+1)dx .

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx is

Given that I=int(e^x(1+x))/(cos(xe^x))dx Find the derivative of xe^x

If I=inte^(-x)log(e^(x)+1)dx , then I equals a) x+(e^(-x)+1)log(e^(x)+1)+C b) x+(e^(x)+1)log(e^(x)+1)+C c) x-(e^(-x)+1)log(e^(x)+1)+C d)None of these

Find int ((e ^(x) - e ^(-x)) dx)/( (e ^(x) + e ^(-x))

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

Evaluate int(e^(x))/(sqrt(4-e^(2x)))dx

Evaluate int(e^(x))/(e^(2x)+6e^(x)+5)dx .

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

Evaluate the following integrals int(e^ (tan^-1x))/(1+x^2)dx .