Home
Class 12
MATHS
int(ln(tanx))/(sinx*cosx)dx, is equal to...

`int(ln(tanx))/(sinx*cosx)dx`, is equal to

A

`1/2ln(tanx)+C`

B

`1/2ln(tan^(2)x)+C`

C

`1/2(ln(tanx))^(2)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(tanx)(sinx-secx)dx , is equal to a) e^(tanx)*cosx+C b) e^(tanx)*sinx+C c) -e^(tanx)*cosx+C d) e^(tanx)*secx+C

int(sinx-cosx)^(4)(sinx+cosx)dx is equal to a) (sinx-cosx)/(5)+c b) ((sinx-cosx)^(5))/(5)+c c) ((sinx-cosx)^(4))/(4)+c d) ((sinx+cosx)^(5))/(5)+c

int(cos2x)/(cosx)dx is equal to

int_(0)^(pi)abs(cosx)dx is equal to :

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

inte^(x){logsinx+cotx}dx is equal to : a) e^(x)cotx+c b) e^(x)logsinx+c c) e^(x)logsinx+tanx+c d) e^(x)+sinx+c

Evaluate int(sqrt(tanx))/(sinxcosx)dx .

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

Evaluate the following integrals int(sqrttanx)/(2sinx.cosx)dx .

int(cos2x-cos2theta)/(cosx-costheta)dx is equal to