Home
Class 12
MATHS
4int(sqrt(a^(6)+x^(8)))/(x)dx is equal t...

`4int(sqrt(a^(6)+x^(8)))/(x)dx` is equal to a)`sqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(8))+a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+c` b)`a^(6)ln|(sqrt(a^(6)+x^(8))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c` c)`sqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(8))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c` d)`a^(6)ln|(sqrt(a^(6)+x^(8))+a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+c`

A

`sqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(8))+a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+c`

B

`a^(6)ln|(sqrt(a^(6)+x^(8))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c`

C

`sqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(8))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c`

D

`a^(6)ln|(sqrt(a^(6)+x^(8))+a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx is equal to a) (1)/(sqrt(3))tan^(-1)((x)/(sqrt(3)(x+1))) b) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(3(x+1)))) c) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(x+1))) d)None of these

int_(-1)^(1//2)(e^(x)(2-x^(2))dx)/((1-x)sqrt(1-x^(2))) is equal to a) (sqrt(e))/(2)(sqrt(3)+1) b) (sqrt(3e))/(2) c) sqrt(3e) d) sqrt(e/3)

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

int(dx)/(x-sqrt(x)) is equal to a) 2log|sqrt(x)-1|+C b) 2log|sqrt(x)+1|+C c) log|sqrt(x)-1|+C d) (1)/(2)log|sqrt(x)+1|+C

int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals a) (3x^(2/3))/(4)+6tan^(-1)(x^(1/6))+C b) (3x^(2/3))/(2)+6tan^(-1)(x^(1/6))+C c) (3x^(2/3))/(10)+6tan^(-1)(x^(1/6))+C d) (3x^(2/3))/(5)+6tan^(-1)(x^(1/6))+C

The eccentricity of the conic ((x+2)^(2))/(7)+(y-1)^(2)=14 is a) sqrt((7)/(8)) b) sqrt((6)/(17)) c) sqrt(3)/(2) d) sqrt((6)/(7))

Integrate int sqrt(x^2-8x+7) dx