Home
Class 12
MATHS
int(dx^(3))/(x^(3)(x^(n)+1)) equals a)(3...

`int(dx^(3))/(x^(3)(x^(n)+1))` equals a)`(3)/(n)ln((x^(n))/(x^(n)+1))+c` b)`1/nln((x^(n))/(x^(n)+1))+c` c)`(3)/(n)ln((x^(n)+1)/(x^(n)))+c` d)`3nln((x^(n+1))/(x^(n)))+c`

A

`(3)/(n)ln((x^(n))/(x^(n)+1))+c`

B

`1/nln((x^(n))/(x^(n)+1))+c`

C

`(3)/(n)ln((x^(n)+1)/(x^(n)))+c`

D

`3nln((x^(n+1))/(x^(n)))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(n-1))/(x^(2n)+a^(2))dx is equal to

int((x^(3)-1))/((x^(4)+1)(x+1))dx= a) 1/4ln(1+x^(4))+1/3ln(1+x^(3))+c b) 1/4ln(1+x^(4))-1/3ln(1+x^(3))+c c) 1/4ln(1+x^(4))-ln(1+x)+c d) 1/4ln(1+x^(4))+ln(1+x)+c

inte^(3logx)(x^(4)+1)^(-1)dx is equal to A) e^(3logx)+c B) (1)/(4)log(x^(4)+1)+c C) (1)/(2)log(x^(4)+1)+c D) (x^(4))/(x^(4)+1)+c

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

(1+ (C_1)/(C_0)) (1+(C_2)/(C_3) )....(1+(C_n)/(C_(n-1))) is equal to : a) (n+1)/(n!) b) ((n+1)^(n))/((n-1)!) c) ((n-1)^(n))/(n!) d) ((n+1)^(n))/(n!)

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2 tan^(-1)x^n

If (dx)/(x^(2)(x^(n)+1)^((n-1)//n))=-[f(x)]^(1//n)+c , then f(x) is

int((x+1)^(2))/(x(x^(2)+1))dx is equal to a) "log"|x(x^(2)+1)|+C b) "log"|x|+C c) "log"|x|+2"tan"^(-1)x+C d) "log"(1/(1+x^(2)))+C