Home
Class 12
MATHS
int((x+1)^(2))/(x(x^(2)+1))dx is equal ...

`int((x+1)^(2))/(x(x^(2)+1))dx` is equal to a)`"log"|x(x^(2)+1)|+C` b)`"log"|x|+C` c)`"log"|x|+2"tan"^(-1)x+C` d)`"log"(1/(1+x^(2)))+C`

A

`log_(e)x+c`

B

`log_(e)x+2tan^(-1)x+c`

C

`"log"_(e)(1)/(x^(2)+1)+c`

D

`log_(e){x(x^(2)+1)}+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int1/(x"log"x^(2))dx is equal to a) 1/(2)"log"|"log"x^(2)|+C b) "log"|"log"x^(2)|+C c) 2"log"|"log"x^(2)|+C d) 4"log"|"log"x^(2)|+C

int(log (x+sqrt(1+x^(2))))/(sqrt(1+x^(2)) )dx is equal to

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

int(dx)/(x-sqrt(x)) is equal to a) 2log|sqrt(x)-1|+C b) 2log|sqrt(x)+1|+C c) log|sqrt(x)-1|+C d) (1)/(2)log|sqrt(x)+1|+C

int(x^(3)-x)/(1+x^(6))dx is equal to a) 1/6"log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C b) 1/6"tan"^(-1)((x^(2)+1)^(2))/(2)+C c) "log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C d) "tan"^(-1)(x^(2)+1)^(2)/(2)+C

int(1+logx)/((1+xlogx)^(2))dx is equal to a) (1)/(1+xlog|x|)+C b) (1)/(1+log|x|)+C c) (-1)/(1+xlog|x|)+C d) log|(1)/(1+log|x|)|+C

int(sqrt(x)+1/(sqrt(x)))^(2)dx is equal to a) x^(2)/(2)+2x+"log"|x|+C b) x^(2)/(2)+2+"log"|x|+C c) x^(2)/(2)+x+"log"|x|+C d) x^(2)/(2)+2x+2"log"|x|+C

int(x^(3)-1)/(x^(3)+x)dx is equal to a) x-log_(e)|x|+log_(e)(x^(2)+1)-tan^(-1)x+C b) x-log_(e)|x|+1/2log_(e)(x^(2)+1)-tan^(-1)x+C c) x+log_(e)|x|+1/2log_(e)(x^(2)+1)+tan^(-1)x+C d)None of these

int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C