Home
Class 12
MATHS
int((x^(3)-1))/((x^(4)+1)(x+1))dx= a)1/4...

`int((x^(3)-1))/((x^(4)+1)(x+1))dx=` a)`1/4ln(1+x^(4))+1/3ln(1+x^(3))+c` b)`1/4ln(1+x^(4))-1/3ln(1+x^(3))+c` c)`1/4ln(1+x^(4))-ln(1+x)+c` d)`1/4ln(1+x^(4))+ln(1+x)+c`

A

`1/4ln(1+x^(4))+1/3ln(1+x^(3))+c`

B

`1/4ln(1+x^(4))-1/3ln(1+x^(3))+c`

C

`1/4ln(1+x^(4))-ln(1+x)+c`

D

`1/4ln(1+x^(4))+ln(1+x)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x+(1)/(x)))dx=

int(dx^(3))/(x^(3)(x^(n)+1)) equals a) (3)/(n)ln((x^(n))/(x^(n)+1))+c b) 1/nln((x^(n))/(x^(n)+1))+c c) (3)/(n)ln((x^(n)+1)/(x^(n)))+c d) 3nln((x^(n+1))/(x^(n)))+c

int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx is equal to : a) 1/4cos[tan^(-1)(x^(4))]+c b) 1/4sin[tan^(-1)(x^(4))]+c c) -1/4cos[tan^(-1)(x^(4))]+c d) 1/4sec^(-1)[tan^(-1)(x^(4))]+c

int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=

inte^(3logx)(x^(4)+1)^(-1)dx is equal to A) e^(3logx)+c B) (1)/(4)log(x^(4)+1)+c C) (1)/(2)log(x^(4)+1)+c D) (x^(4))/(x^(4)+1)+c

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to a) 1/2(ln((x-1)/(x+1)))^(2)+C b) 1/2(ln((x+1)/(x-1)))^(2)+C c) 1/4(ln((x-1)/(x+1)))^(2)+C d) 1/4(ln((x+1)/(x-1)))

int(x^(3)-x)/(1+x^(6))dx is equal to a) 1/6"log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C b) 1/6"tan"^(-1)((x^(2)+1)^(2))/(2)+C c) "log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C d) "tan"^(-1)(x^(2)+1)^(2)/(2)+C

int (3^x)/( sqrt( 1- 9^x )) dx is equal to a) (log 3) sin^(-1) (3^x) + C b) (1)/(3) sin^(-1) (3^x) + C c) ((1)/(log 3)) sin^(-1) (3^x) + C d) (1)/(9) sin^(-1) (3^x) +C

int((2x+1))/((x^(2)+4x+1)^(3//2))dx= a) (x^(3))/((x^(2)+4x+1)^(1//2))+C b) (x)/((x^(2)+4x+1)^(1//2))+C c) (x^(2))/((x^(2)+4x+1)^(1//2))+C d) (1)/((x^(2)+4x+1)^(1//2))+C

int (1)/( x ^(2)( x ^(4) + 1 )^((3)/(4))) dx is equal to a) -((x^4+1)/(x^4))^(1/4)+c b) -((x^4+1)/(2x))^(1/4)+c c) -((x^4+1)/(x))^(1/4)+c d) -((x^4+1)/(x^2))^(1/4)+c