Home
Class 12
MATHS
int(x^(3)-1)/(x^(3)+x)dx is equal to a)x...

`int(x^(3)-1)/(x^(3)+x)dx` is equal to a)`x-log_(e)|x|+log_(e)(x^(2)+1)-tan^(-1)x+C` b)`x-log_(e)|x|+1/2log_(e)(x^(2)+1)-tan^(-1)x+C` c)`x+log_(e)|x|+1/2log_(e)(x^(2)+1)+tan^(-1)x+C` d)None of these

A

`x-log_(e)|x|+log_(e)(x^(2)+1)-tan^(-1)x+C`

B

`x-log_(e)|x|+1/2log_(e)(x^(2)+1)-tan^(-1)x+C`

C

`x+log_(e)|x|+1/2log_(e)(x^(2)+1)+tan^(-1)x+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x log a ) e^(x) dx is equal to :

int 1/x(log_(ex)e)dx is equal to

int((x+1)^(2))/(x(x^(2)+1))dx is equal to a) "log"|x(x^(2)+1)|+C b) "log"|x|+C c) "log"|x|+2"tan"^(-1)x+C d) "log"(1/(1+x^(2)))+C

lim""_(xto3)(e^(x-3)-x+1)/(x^(2)-log(x-2)) is equal to

int_(1//2)^(2)|log_(10)x|dx= a) log_(10)(8//e) b) 1/2log_(10)(8//e) c) log_(10)(2//e) d)None of these

int(x^(3)-x)/(1+x^(6))dx is equal to a) 1/6"log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C b) 1/6"tan"^(-1)((x^(2)+1)^(2))/(2)+C c) "log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C d) "tan"^(-1)(x^(2)+1)^(2)/(2)+C

int( d x)/(e^x+e^(-x)) is equal to a) tan ^(-1)(e^x)+C b) tan ^(-1)(e^-x)+C c) log (e^x-e^-x)+C d) log (e^x+e^-x)+C

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

lim _( x to 0) [ (2 ^(x) -1)/( sqrt (1 + ) x-1 )] is equal to: a) log _(e) 2 b) log _(e) sqrt2 c) log _(e) 4 d) 1/2