Home
Class 12
MATHS
int(2sin2x-cosx)/(6-cos^(2)x-4sinx)dx= a...

`int(2sin2x-cosx)/(6-cos^(2)x-4sinx)dx=` a)`log|sin^(2)x-4sinx+5|+7tan^(-1)(sinx-2)+C` b)`2log|sin^(2)x-4sinx+5|+7tan^(-1)(sinx-2)+C` c)`2log|sin^(2)x-4sinx+5|+C` d)`log|sin^(2)x+4sinx+5|+7tan^(-1)(sinx-2)+C`

A

`log|sin^(2)x-4sinx+5|+7tan^(-1)(sinx-2)+C`

B

`2log|sin^(2)x-4sinx+5|+7tan^(-1)(sinx-2)+C`

C

`2log|sin^(2)x-4sinx+5|+C`

D

`log|sin^(2)x+4sinx+5|+7tan^(-1)(sinx-2)+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(3sinx+2cosx)/(3cosx+2sinx)dx=ax+bln|2sinx+3cosx|+C then

int4sinx*"cos"(x)/(2)*"cos"(3x)/(2)dx is equal to

int_(-pi//2)^(pi//2)sin^(2)xcos^(2)x(sinx+cosx)dx=

int (sin x + cos x)/( e^(-x) + sin x) dx is equal to a) log | 1-e^(x) sin x| +C b) log | 1 + e^(-x) sin x| + C c) log | 1+e^(x) sin x| + C d) log | 1 -e^(-x) sinx | +C

sin^-1(sinx)=x is defined on

int(sin^(2)x*sec^(2)x+2tanx*sin^(-1)x*sqrt(1-x^(2)))/(sqrt(1-x^(2))(1+tan^(2)x))dx= a) (cos^(2)x)(sin^(-1)x)+C b) (sin^(2)x)(sin^(-1)x)+C c) (sec^(2)x)(cos^(-1)x)+C d) (sec^(2)x)(tan^(-1)x)+C

intsin^(-1)((2x)/(1+x^(2)))dx is equal to a) xtan^(-1)x-ln|sec(tan^(-1)x)|+C b) xtan^(-1)x+ln|sec(tan^(-1)x)|+C c) xtan^(-1)x-ln|cos(tan^(-1)x)|+C d)None of these

Find the following integrals intfrac((3sinx-2)cosx)(5-cos^2x-4sinx)dx

int(cos5x+cos4x)/(1-2cos3x)dx is equal to a) -((sin2x)/(2)+cosx)+C b) -((cos2x)/(2)+sinx)+C c) -((cos2x)/(2)+cosx)+C d) -((sin2x)/(2)+sinx)+C

int( cos 2 x)/(sin x+cos x)^2 d x is equal to a) -1/(sin x+cos x)+C b) log |sin x+cos x|+C c) log |sin x-cos x|+C d) 1(sin x+cos x)^2