Home
Class 12
MATHS
intsin^(-1)((2x)/(1+x^(2)))dx is equal t...

`intsin^(-1)((2x)/(1+x^(2)))dx` is equal to a)`xtan^(-1)x-ln|sec(tan^(-1)x)|+C` b)`xtan^(-1)x+ln|sec(tan^(-1)x)|+C` c)`xtan^(-1)x-ln|cos(tan^(-1)x)|+C` d)None of these

A

`xtan^(-1)x-ln|sec(tan^(-1)x)|+C`

B

`xtan^(-1)x+ln|sec(tan^(-1)x)|+C`

C

`xtan^(-1)x-ln|cos(tan^(-1)x)|+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

int (dx)/((x + 1) sqrt(x)) is equal to a) tan^(-1) sqrt(x) + C b) 2 tan^(-1) x + C c) 2 tan^(-1) (sqrt(x)) + C d) tan^(-1) (x^((3)/(2))) + C

int(log (x+sqrt(1+x^(2))))/(sqrt(1+x^(2)) )dx is equal to

int( d x)/(e^x+e^(-x)) is equal to a) tan ^(-1)(e^x)+C b) tan ^(-1)(e^-x)+C c) log (e^x-e^-x)+C d) log (e^x+e^-x)+C

int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx is equal to : a) 1/4cos[tan^(-1)(x^(4))]+c b) 1/4sin[tan^(-1)(x^(4))]+c c) -1/4cos[tan^(-1)(x^(4))]+c d) 1/4sec^(-1)[tan^(-1)(x^(4))]+c

int((x+1)^(2))/(x(x^(2)+1))dx is equal to a) "log"|x(x^(2)+1)|+C b) "log"|x|+C c) "log"|x|+2"tan"^(-1)x+C d) "log"(1/(1+x^(2)))+C

int(2x + sin 2x)/(1 + cos 2x)dx is equal to a) x + log |tan x| + C b) x log|tan x| + C c) x tan x + C d) x + tan x + C

If I=inte^(-x)log(e^(x)+1)dx , then I equals a) x+(e^(-x)+1)log(e^(x)+1)+C b) x+(e^(x)+1)log(e^(x)+1)+C c) x-(e^(-x)+1)log(e^(x)+1)+C d)None of these

The value of tan {sin^(-1)(cos(sin^(-1)x))} tan{cos^(-1) (sin(cos^(-1)x))} x in (0,1) a)0 b)1 c)-1 d)None of these

If y = tan^(-1) x + sec^(-1) x + cot^(-1) x + "cosec"^(-1)x , then (dy)/(dx) is equal to